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Abstract
The symmetry structure of the six families of inner elastic constants (derivatives
of the free energy with respect to one, two, or three components of the relative
sublattice displacement) that enter the elasticity, through the third order, of the
cubic and hexagonal diamond allotropes and of the hexagonal and rhombohedral
graphite allotropes is analysed in detail. This is followed by derivations (i) of the
forms of the linear and quadratic internal strain tensors, (ii) of the expressions
for the zone-centre optic mode frequencies and eigenvectors, and (iii) of the
effective inner elastic constants that determine these frequencies in arbitrarily
strained crystals together with (iv) the derived pressure dependences of those
frequencies.

1. Introduction

This and the following paper [1] contain a full, formal treatment of the elasticity, through
the third order, of four diamond and graphite allotropes of carbon. They have been written
to pave the way for individual studies of the elasticity of each allotrope. In order to be
fully comprehensive it is necessary to look at as many related properties as possible: not
solely macroscopic elastic constants, but optic mode frequencies, their stress and/or pressure
dependence, and internal strain. In other words it is necessary to focus on microscopic
aspects—the consequences of the relative movements of sublattices.

In section 2 parallel definitions of two families of microscopic tensors are introduced
(following the general principles laid out earlier in [2] and [3]). A full symmetry analysis of
these inner elastic constants is given, for each structure, in section 3. The analysis is more
intricate than that employed for macroscopic tensors, such as the ordinary elastic constants,
because the translations associated with screw and glide operations can no longer be ignored.
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Thus although hexagonal diamond (hD) and hexagonal graphite (hG) belong to the same space
group there are significant differences in the make-up of their inner elastic constants due to the
different symmetry characteristics of the atomic sites. Some of the results for cubic diamond
(cD) have been obtained before [4,5] but are repeated here for completeness. In addition they
have been put into a non-conventional form, by transformation of axes, to facilitate comparison
with rhombohedral graphite (rG) and with intermediate structures along possible solid-state
transformation paths from rG to cD; see [6] and [7].

General expressions for the linear and quadratic internal strain tensors are given in
section 4. The independent components of the linear tensors are presented for all four
allotropes. Those of the quadratic tensor are given for cD alone.

The frequencies of optic modes at the zone centre and their eigenvectors are treated in
section 5 via a secular equation that relates to the optic modes alone. Explicit solutions
for each allotrope are given. The variation of frequency with strain can be followed if the
secular equation for the strained crystal can be obtained. This is possible in terms of effective
inner elastic constants that are defined in a way similar to that used for the macroscopic elastic
constants. Results are listed for each allotrope in section 6. Finally, expressions for the pressure
dependence of the optic mode frequencies have been deduced and presented in section 7.

2. Sublattice tensors and inner elastic constants

The microscopic tensors considered here are partial derivatives of contributions to the free
energy per unit initial volume with respect to sublattice displacements under strain. They are
microscopic because they refer to energy associated with parts of the basis—the energy of
covalent bonds sited on the atoms occupying a single sublattice, for example—and they occur
only in those structures where some or all of the atomic sites lack inversion symmetry.

There are two approaches to the definition of elastic constants. The first is in terms of the
infinitesimal-strain matrix ε, derived from the deformation gradient matrix H = I + ε, and
the displacements �uα of the sublattices from their equilibrium positions. Atomic coordinates
are given by �rα = H �rα

0 + �uα and α runs from 1 to n, the number of atoms in the basis, with
�uα ≡ 0 for sites with inversion symmetry. The second is in terms of the finite-, or Lagrangian,
strain matrix η, given by 2η+ I = H̃H , where the tilde denotes transposition, and �wα = H̃ �uα:
constants defined this way are usually referred to as Brugger constants [8]. The two forms
coexist because strains in the first case are more computationally friendly when contributions
to the energy are not simple analytical functions of interatomic distances or atomic volume
whilst strains and sublattice displacements in the second case are rotationally invariant and
therefore rigorous thermodynamically. It is the finite-strain approach that is followed in the
remainder of this paper. As η is symmetric, the usual Voigt contraction of suffixes will be
implemented: the strain represented by ηI where I runs from 1 to 6.

The �wα are not all independent because homogeneous deformation does not shift the
centre of mass. Thus

∑n
1 �wα = 0, assuming that all atoms in the basis have the same mass,

as is the case in this study. This redundancy is removed by defining n − 1 independent inner
displacements �ζ λ through the prescription �ζ λ = �wλ+1 − �wλ or �ζ λ = �λα �wα on introducing
the rectangular matrix

� =




−1 1 · · · · · ·
· −1 1 · · · · ·
...

...
...

. . .
...

...

· · · · · · 1 ·
· · · · · · −1 1


 .
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Two sets of microscopic constants may be defined: the first consists of three families of
sublattice tensors relating to sublattice displacement:

dα
i = ρ0(∂F/∂wα

i )0

e
αβ

ij = ρ0(∂
2F/∂wα

i ∂w
β

j )0

f
αβγ

ijk = ρ0(∂
3F/∂wα

i ∂w
β

j ∂w
γ

k )0;
the second of three parallel families of inner elastic constants relating to inner displacement:

Dλ
i = ρ0(∂F/∂ζ λ

i )0

E
λµ

ij = ρ0(∂
2F/∂ζ λ

i ∂ζ
µ

j )0

F
λµν

ijk = ρ0(∂
3F/∂ζ λ

i ∂ζ
µ

j ∂ζ ν
k )0

where ρ0 is the equilibrium density, F is the free energy per unit mass, and the subscripts
i, j , and k take values from 1 to 3. Whereas a single letter, C, is used for ordinary elastic
constants of different orders, the sequences d, e, f and D, E, F are used here in mnemonic
spirit to distinguish at a glance between first, second, and third derivatives with respect to
displacements. The constants in the upper set are related to those in the lower via chain rule
differentiation with the operator

∂

∂wα
i

=
(

∂ζ λ
i

∂wα
i

)
∂

∂ζ λ
i

= �̃αλ ∂

∂ζ λ
i

(1)

where �̃ is the transpose of the matrix defined above.
The three remaining families couple internal and external strain and comprise the following

sets:

dα
iJ = ρ0(∂

2F/∂wα
i ∂ηJ )0

dα
iJK = ρ0(∂

3F/∂wα
i ∂ηJ ∂ηK)0

e
αβ

ijK = ρ0(∂
3F/∂wα

i ∂w
β

j ∂ηK)0

and

Dλ
iJ = ρ0(∂

2F/∂ζ λ
i ∂ηJ )0

Dλ
iJK = ρ0(∂

3F/∂ζ λ
i ∂ηJ ∂ηK)0

E
λµ

ijK = ρ0(∂
3F/∂ζ λ

i ∂ζ
µ

j ∂ηK)0

in which the subscripts J and K may have values from 1 to 6. The constants involving inner
displacement are given in terms of the those involving sublattice displacement by

Dλ
··· = −

λ∑
p=1

dp
···

Eλµ
··· =

λ∑
p=1

µ∑
q=1

epq
···

Fλµν
··· = −

λ∑
p=1

µ∑
q=1

ν∑
r=1

f pqr
···

(2)

for all valid subscript sequences i, iJ , or iJK on d and D; all ij or ijK on e and E; and all
ijk on f and F .
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As the n sublattice displacements �wα are not independent it follows from application of (1)
that

n∑
p=1

dp
··· = 0

n∑
p=1

eαp
··· =

n∑
p=1

epβ
··· = 0

n∑
p=1

f αβp
··· =

n∑
p=1

f αpγ
··· =

n∑
p=1

f pβγ
··· = 0

(3)

for any values of α, β, or γ . The results are true a fortiori for double or triple summations.
It is easily seen that as λ, µ, and ν increase the number of terms on the right of (2)

escalates. Smaller numbers can be retrieved by combining (2) and (3) to give alternative,
equivalent, definitions. For example, combining the summations involving λ in corresponding
tensors gives

Dλ
··· = +

n∑
p=λ+1

dp
···

Eλµ
··· = −

n∑
p=λ+1

µ∑
q=1

epq
···

Fλµν
··· = +

n∑
p=λ+1

µ∑
q=1

ν∑
r=1

f pqr
··· ,

(4)

where the signs on the right are the opposite of those in (2). If the limits on a second superscript
are modified the sign will be reversed again, and so on.

3. Symmetry

The essential geometry of the structures—the space groups, primitive unit-cell vectors, atomic
coordinates, and the allocation of sublattice indices—is summarized in table 1. To make
comparison easy the four structures are show in figure 1 in relation to hexagonal cells: triple
cells for cD and rG and primitive ones for hD and hG.

Although the inner elastic constants are free of redundancy, a certain arbitrariness has been
introduced: a relabelling of the sublattices will lead to a shuffling of values of the components
of the tensors. For this reason it is much simpler to treat the symmetry of the sublattice tensors
d, e, and f and subsequently to deduce that of the inner elastic constants D, E, and F . The
simpler part has already been done. The forms of the individual tensors of the dα , eαβ , and
f αβγ families, their non-zero components, and any interdependences, have been extracted
from tables 10 to 14 in [3] at the appropriate point group (4̄3m for cD, 3m for rG and hD, and
6̄m2 for hG), and are presented in tables 2 and 3. Some additional simplification follows from
the commutative nature of differentiation: e

αβ

ij · = e
αβ

ji· when α = β, dα
iJK = dα

iKJ , and several

similar relations for f
αβγ

ijk .

3.1. Cubic diamond and rhombohedral graphite

A major simplification occurs for structures in which the basis comprises two atoms only, so
n = 2. Then λ, µ, and ν take only the value 1 and the superscripts on D, E, and F become
redundant. It also follows that the summations in (2) disappear, leaving only single terms on
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Figure 1. In (a) a triple hexagonal cell is used for cD to facilitate comparison with hD in (b). In (c)
a triple cell is used similarly for rG to contrast its layer structure (ABCA) with that of hG (ABA)
in (d). In hG the distinction between non-equivalent pairs of atoms is made by depth of shading.
sp3 or sp2 bonds entirely within a cell have been emphasized.

the right involving p = q = r = 1 and giving the simplest possible general set of independent
components:

Di.. = −d1
i..

Eij. = e11
ij.

Fijk = −f 111
ijk .

A full collection of specific independent components is shown in table 4 and the complete
collection of all non-zero components is obtained by collating the entries in this table with
those in tables 2 and 3.

The alternative description of the inner elasticity of cD that will facilitate comparison with
the intermediate structures along the cD-to-rG transformation path is produced by a rotation
of axes. The matrix

a =




1√
2

− 1√
2

0

1√
6

1√
6

− 2√
6

1√
3

1√
3

1√
3
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Table 1. Essential geometry and the assignment of sublattice indices to the atomic sites in the
various structures. In cD a is the lattice parameter of the cubic cell; in rG a and c are the lattice
parameters of the non-primitive triple hexagonal cell and γ = c/a is the axial ratio. Ideal rG has
u = 1/6 and ideal hD has z = 1/16.

cD rG hD hG

Space group Fd 3̄m R3̄m P 63/mmc

Unit-cell vectors �a1
a

2
[0, 1, 1]

a

6
[3,

√
3, 2γ ] a[1, 0, 0]

�a2
a

2
[1, 0, 1]

a

6
[−3,

√
3, 2γ ] a

[
− 1

2
,

√
3

2
, 0

]

�a3
a

2
[1, 1, 0]

a

3
[0, −√

3, γ ] a[0, 0, γ ]

Wyckoff sites a c f d : b
Site symmetry 4̄3m 3m 3m 6̄m2

Sublattice indices 1 −( 1
8

1
8

1
8 ) −(u u u) ( 1

3
2
3 z) ( 1

3
2
3

3
4 ) :

2 ( 1
8

1
8

1
8 ) (u u u) ( 2

3
1
3 1 − z) ( 2

3
1
3

1
4 ) :

3 ( 1
3

2
3

1
2 − z) : (0 0 3

4 )

4 ( 2
3

1
3

1
2 + z) : (0 0 1

4 )

Table 2. The symmetry of the individual sublattice tensors in cD: the non-zero components of each
and the relationships between them. α, β, and γ equal 1 or 2.

dα
14 = dα

25 = dα
36

e
αβ

11 = e
αβ

22 = e
αβ

33

dα
114 = dα

225 = dα
336

dα
124 = dα

134 = dα
215 = dα

235 = dα
316 = dα

326

dα
156 = dα

246 = dα
345

e
αβ

111 = e
αβ

222 = e
αβ

333

e
αβ

112 = e
αβ

113 = e
αβ

221 = e
αβ

223 = e
αβ

331 = e
αβ

332

e
αβ

126 = e
αβ

135 = e
αβ

216 = e
αβ

234 = e
αβ

315 = e
αβ

324

f
αβγ

123 = f
αβγ

132 = f
αβγ

213 = f
αβγ

231 = f
αβγ

312 = f
αβγ

321

transforms the usual cD coordinate system (0x1, 0x2, and 0x3 along [100], [010], and [001]
respectively) to one in which 0x ′

1 lies along [11̄0], 0x ′
2 along [112̄], and 0x ′

3 along [111].
Tensors in the new system are related to those in the old by the transformation law [9]

T ′
ijk... = aipajqakr · · · Tpqr....

The tensors that are in contracted form must first be uncontracted, then transformed, then
recontracted. These results have been added to table 4. Rotation of axes cannot increase
the actual number of independent components of any tensor. The apparent increase conceals
numerous relations between the members of the modified set.

3.2. Hexagonal diamond and hexagonal graphite

When structures have a basis of four atoms the analysis becomes more intricate and depends
on space group symmetry arguments. Both hD and hG belong to the space group P 63/mmc,
(No 194 in the International Tables for Crystallography [10]), which is non-symmorphic.
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Table 3. The symmetry of the individual sublattice tensors in hG (left-hand column only), rG, and
hD (both columns): the non-zero components of each and the relationships between them. The
point groups behind these relations are indicated. α, β, and γ equal 1 or 2 in rG; 1, 2, 3, or 4 in
hD and hG.

6̄m2 6mm

dα
3

dα
16 = dα

21 = −dα
22 dα

15 = dα
24

dα
31 = dα

32

dα
33

dα
116 = − 1

4 (dα
211 + 3dα

222) dα
115 = dα

224

dα
126 = 1

4 (3dα
211 + dα

222) dα
125 = dα

214

dα
136 = dα

213 = −dα
223 dα

135 = dα
234

dα
145 = −dα

244 = dα
255 dα

146 = dα
256 = 1

2 (dα
115 − dα

125)

dα
212 = dα

266 = 1
2 (dα

116 − dα
126) dα

311 = dα
322 = dα

312 + 2dα
366

dα
314 = −dα

324 = dα
356 dα

313 = dα
323

dα
333

dα
344 = dα

355

f
αβγ

112 = f
αβγ

121 = f
αβγ

211 = −f
αβγ

222 f
αβγ

113 = f
αβγ

223

f
αβγ

131 = f
αβγ

232

f
αβγ

311 = f
αβγ

322

f
αβγ

333

6̄m2, 6mm, part of 3m · · · · · · rest of 3m

e
αβ

11 = e
αβ

22

e
αβ

33

e
αβ

111 = e
αβ

222

e
αβ

112 = e
αβ

221

e
αβ

113 = e
αβ

223

e
αβ

126 = e
αβ

216 = 1
2 (e

αβ

111 − e
αβ

112) e
αβ

114 = e
αβ

125 = e
αβ

215 = −e
αβ

214

e
αβ

135 = e
αβ

234 e
αβ

136 = e
αβ

231 = −e
αβ

232

e
αβ

315 = e
αβ

324 e
αβ

316 = e
αβ

321 = −e
αβ

322

e
αβ

331 = e
αβ

332

e
αβ

333

This indicates the presence of screw and glide symmetry elements. The 24 symmetry elements
are represented by augmented 4 × 4 partitioned matrices:

{Ri |�t } =
[

Ri �t
0 1

]

where the Ri are 3 × 3 point symmetry operations and �t is a 3 × 1 column vector representing
the fractional translation associated with Ri . Half the operations have �t = [0/0/0] and half
have �t = [0/0/ 1

2 ].
The position coordinates and the indices assigned to the sublattices are shown in table 1.

In table 5 are shown the permutations of the sublattice indices induced by the 24 operations
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Table 4. Independent components of the inner elastic constants: cD in columns 1 and 4, and rG in
columns 2 and 5. In columns 3 and 6 cD is referred to the rhombohedral system in reverse setting
(0x′

1 along [11̄0], 0x′
2 along [112̄], and 0x′

3 along [111]) (upper signs) and, with a further rotation
of 90◦ about 0x′

3, in obverse setting (lower signs): linear combinations of elements from columns 1
or 4 are equivalent to the element in columns 2 or 5. The full sets of non-zero components are
obtained by reading columns 1 and 2, and 4 and 5 in conjunction with the relations in tables 2 and 3.

D3 ≡ 0 D114 D116 ± 1√
6
(D114 + D124 + 2D156)

D14 D16 ± 2√
3
D14 D124 D126 ∓ 1

3
√

6
(D114 − 7D124 + 2D156)

D15 − 1√
3
D14 D156 D136 ± 2

3
√

6
(2D114 + D124 − 2D156)

D31 − 1√
3
D14 D145 ∓ 2

3
√

6
(D114 − D124 − D156)

D33
2√
3
D14 D314 ± 1

3
√

6
(D114 − D124 + 2D156)

D115 − 1

2
√

3
(D114 + D124 + 2D156)

D125 − 1

6
√

3
(5D114 + D124 − 2D156)

D135
1

3
√

3
(D114 − 4D124 + 2D156)

D311 − 2√
3
D124

D312 − 2

3
√

3
(2D114 + D124 − 2D156)

D313
1

3
√

3
(D114 + 2D124 − 4D156)

D333
4

3
√

3
(D114 + 2D124 + 2D156)

D344 − 1

3
√

3
(2D114 − 2D124 + D156)

E11 E11 E11 E111 E111
1
2 (E111 + E112 + 2E126)

E33 E11 E112 E112
1
6 (E111 + 5E112 − 2E126)

E126 E113
1
3 (E111 + 2E112 − 2E126)

E126
1
6 (E111 − E112 + 4E126)

E135
1
3 (E111 − E112 + E126)

E331
1
3 (E111 + 2E112 − 2E126)

E333
1
3 (E111 + 2E112 + 4E126)

E114 ± 1

3
√

2
(E111 − E112 − 2E126)

E136 ± 1

3
√

2
(E111 − E112 − 2E126)

F123 F112 ± 2√
6
F123

F113 − 1√
3
F123

F333
2√
3
F123
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Table 5. Permutations of sublattice indices corresponding to space group symmetry operations for
the hexagonal structures. �t is the fractional translation column vector [0/0/ 1

2 ]. The spaced colon
separates the non-equivalent pairs in hG.

Symmetry operations in Subgroup formed Permutations
space group P 63/mmc with row 1 hD hG

{1|0} {3+|0} {3−|0} {m|0} {m′|0} {m′′|0} R3m (1)(2)(3)(4) (1)(2) : (3)(4)

{i|0} {3̄+|0} {3̄−|0} {2|0} {2′|0} {2′′|0} P 3̄m1 (12)(34) (12) : (34)

{2z|�t } {6+|�t } {6−|�t } {c|�t } {c′|�t } {c′′|�t } P 63mc (14)(23) (12) : (34)

{mz|�t } {6̄+|�t } {6̄−|�t } {2◦|�t } {2′|�t } {2′′|�t } P 6̄m2 (13)(24) (1)(2) : (3)(4)

of the space group. The latter divide into four subsets of six operations. Those in the first
row form a subgroup of point symmetry 3m and leave the sublattice indices in hD unchanged.
Those in the first and fourth rows together form a subgroup of point symmetry 6̄m2 and leave
the hG indices unchanged. This determines the fundamental form of the individual sublattice
tensors and indicates that those in hD will have more non-zero components than those in hG.
The two structures therefore require individual treatment.

3.2.1. Hexagonal diamond. The components of the d- and f -tensors in hD are divided
conveniently into mutually exclusive 6̄m2 and 6mm sets, as shown in table 3. The operations
in rows 1 and 2 of the table 5 together constitute the subgroup P 3̄m1. Because half the
operations interchange the sublattice indices 1 ↔ 2 and 3 ↔ 4 simultaneously the point
group 3̄m determines the non-zero elements of sum tensors such as d1

i.. + d2
i... Since 3̄m is

centrosymmetric all elements of sum tensors bearing an odd number of superscripts vanish.
Thus

d1
i.. + d2

i.. = 0

d3
i.. + d4

i.. = 0.

The operations in rows 1 and 3 similarly comprise the subgroup P 63mc, with row 3 operations
producing the interchanges 1 ↔ 4 and 2 ↔ 3. The point group 6mm now determines the
non-zero elements of sum tensors such as d1

i.. +d4
i... Finally operations in rows 1 and 4 together

constitute the subgroup P 6̄m2, with row 4 operations producing the interchanges 1 ↔ 3 and
2 ↔ 4. The point group 6̄m2 now determines the non-zero elements of sum tensors such as
d1

i.. + d3
i... Thus the following deductions can be made:

d1
i.. + d3

i.. = −(d2
i.. + d4

i..) �= 0 6̄m2 elements

= 0 6mm elements

d1
i.. + d4

i.. = −(d2
i.. + d3

i..) �= 0 6mm elements

= 0 6̄m2 elements.

In summary,

d1
i.. = −d2

i.. = ±d3
i.. = ∓d4

i..

with the upper (lower) signs applicable to 6̄m2 (6mm) elements. In conjunction with (2) or (4)
and (3), these give independent, zero, and dependent components as follows:

D1
i.. = −d1

i..

D2
i.. = 0

D3
i.. = ±D1

i..,

with the same interpretation of signs.
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Similarly it is possible to use the above arguments to generate sixteen relations that are
satisfied by the f -tensors:

f 111
ijk = −f 222

ijk = ±f 333
ijk = ∓f 444

ijk

f 112
ijk = −f 221

ijk = ±f 334
ijk = ∓f 443

ijk

...
...

...

f 144
ijk = −f 233

ijk = ±f 322
ijk = ∓f 411

ijk .

Equations (2)–(4) are then invoked many times to establish a preliminary maximum number
of independent components (13) and a minimum number of dependent components (also 13):

F
λµν

ijk = −
λ∑

p=1

µ∑
q=1

ν∑
r=1

f
pqr

ijk λµν < 222

F 222
ijk = 0

F
λµν

ijk = ±F
4−λ,4−µ,4−ν

ijk λµν > 222,

reading λµν as a three-digit number and with the same interpretation of ± as before. There is
only a single independent sublattice tensor component in the 6̄m2 set, which may be taken as
f

αβγ

222 . As the three subscripts are equal, the commutative property of differentiation implies
that all components with permuted superscripts are equal. This property carries over to the
inner elastic constants F

λµν

ijk and reduces the number of independent constants to three and

renders six more zero. For the 6mm set the component f
αβγ

333 gives the same result. The
remaining three independent components each permit the interchange of a different pair of
superscripts. The net result is that six F

λµν

113 may be chosen as independent and the remaining
components F

λµν

131 and F
λµν

311 related to them. All these results are embodied in table 6.
All the components of the second-order e-tensors and most of those of the third order

belong in common to 3m, 3̄m, 6̄m2, and 6mm symmetry, the remainder to 3̄m and 3m only.
The difference between these sets lies in the effect of the symmetry operations on the signs
of individual components: in the main set the (uncontracted) subscript sequences have the
form ii, iiii, iijj , or ij ij and the components do not change sign under any operation; in the
residual set the sequences are iijk, ij ik, ij ii, or ijkk (one 3 and an odd number of 2s, in fact)
and the components change sign under operations in rows 3 and 4 of table 5. In the main set
attention therefore focuses on difference tensors, such as e11

ij. − e22
ij., whose signs are reversed

by operations in rows 2, 3, and 4 of the table. This shows that all such difference tensors are
null and thus that

e11
ij. = e22

ij. = ±e33
ij. = ±e44

ij.

e12
ij. = e21

ij. = ±e34
ij. = ±e43

ij.

e13
ij. = e24

ij. = ±e31
ij. = ±e42

ij.

e14
ij. = e23

ij. = ±e32
ij. = ±e41

ij.

where the plus signs are taken throughout. The residual set of third-order terms gives rise to
the minus signs via the nullification of sum tensors, such as e11

ij. + e33
ij. and e23

ij. + e32
ij., by the

operations of rows 3 and 4 in table 5.
The inner elastic constants follow from (2) or (4) and (3). Independent and dependent

constants for the main set are

E11
ij. = e11

ij.
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Table 6. Interrelation of components of the inner elastic constants of hD. The left-hand elements
in column 1 and the lower part of column 2, associated with the subscript sequence in column 2
if any, may be taken as an independent set. The full sets of non-zero components are obtained by
reading columns 1 and 2 in conjunction with the appropriate relations in table 3. All components
D2

iJ , D2
iJK and F 222

ijk are zero.

D1
3 = −D3

3

D1
16 = D3

16

D1
iJ = −D3

iJ iJ = 15, 31, 33

E11
ii = E33

ii ii = 11, 33

E12
ii = E21

ii = 1
2 E22

ii = E23
ii = E32

ii ii = 11, 33

E13
ii = E31

ii ii = 11, 33

D1
iJK = D1

iKJ = D3
iJK = D3

iKJ iJK = 116, 126, 136, 145, 314

D1
iJK = D1

iKJ = −D3
iJK = −D3

iKJ iJK = 115, 125, 135, 311, 312, 313, 333, 344

E11
ijK = E33

ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E12
ijK = E21

ijK = 1
2 E22

ijK = E23
ijK = E32

ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E13
ijK = E31

ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E11
ijK = −E33

ijK ijK = 114, 136, 316

E13
ijK = −E31

ijK ijK = 114, 136, 316

F 111
112 = F 333

112

F 112
112 = F 121

112 = F 122
112 = F 211

112 = F 212
112 = F 221

112

= F 123
112 = F 132

112 = F 213
112 = F 231

112 = F 312
112 = F 321

112

= F 223
112 = F 232

112 = F 233
112 = F 322

112 = F 323
112 = F 332

112

F 113
112 = F 131

112 = F 133
112 = F 311

112 = F 313
112 = F 331

112

F 111
113 = −F 333

113

F 112
113 = F 122

113 = F 212
113 = −F 232

113 = −F 322
113 = −F 332

113

F 113
113 = −F 331

113

F 121
113 = F 211

113 = −F 233
113 = −F 323

113

F 123
113 = F 213

113 = −F 231
113 = −F 321

113

F 131
113 = −F 133

113 = F 311
113 = −F 313

113

F 221
113 = −F 223

113

F 111
333 = −F 333

333

F 112
333 = F 121

333 = F 122
333 = F 211

333 = F 212
333 = F 221

333

= −F 223
333 = −F 232

333 = −F 233
333 = −F 322

333 = −F 323
333 = −F 332

333

F 113
333 = F 131

333 = −F 133
333 = F 311

333 = −F 313
333 = −F 331

333

E12
ij. = e11

ij. + e12
ij.

E13
ij. = −e14

ij.

E22
ij. = 2E12

ij.

E21
ij. = E23

ij. = E32
ij. = E12

ij.

E31
ij. = E13

ij.

E33
ij. = E11

ij.
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and for the residual set are

E11
ij. = e11

ij.

E13
ij. = −e14

ij.

E12
ij. = E21

ij. = E22
ij. = E23

ij. = E32
ij. = 0

E31
ij. = −E13

ij.

E33
ij. = −E11

ij. .

This completes the analysis for hD.

3.2.2. Hexagonal graphite. The arguments for hG are largely a repeat of those above but
with outcomes that differ because the basis consists of two non-equivalent pairs rather than
a single quartet. All the individual d-, e-, and f -tensors have 6̄m2 symmetry. Operations in
rows 1 to 4 combined constitute P 63/mmc and all elements of sum tensors, such as d1

i.. + d2
i..,

vanish as the associated point group 6/mmm is centrosymmetric. Thus

d1
i.. + d2

i.. = 0

d3
i.. + d4

i.. = 0

with no further interrelations. Thus, using (2) and (3),

D1
i.. = −d1

i..

D2
i.. = 0

D3
i.. = +d4

i..

giving two independent inner elastic constants where hD had one.
For the f -tensors there are sixteen pairs of relations:

f 111
ijk = −f 222

ijk f 333
ijk = −f 444

ijk

f 112
ijk = −f 221

ijk f 334
ijk = −f 443

ijk

...
...

f 144
ijk = −f 233

ijk f 322
ijk = −f 411

ijk .

In conjunction with (2)–(4) it is found that the independent and zero elements are

F 111
ijk = −f 111

ijk

F 112
ijk = −(f 111

ijk + f 112
ijk )

F 113
ijk = +f 114

ijk

F 123
ijk = +(f 114

ijk + f 124
ijk )

F 133
ijk = −f 144

ijk

F 223
ijk = −(f 144

ijk + f 244
ijk )

F 333
ijk = +f 444

ijk

F 222
ijk = 0.

The numerous dependent elements, related by permutation of superscripts for the reason given
above for hD, are displayed in table 6.



Elasticity of carbon allotropes: I 5103

The analysis of the e- and E-tensors follows that of the main group in hD though with a
slightly different outcome:

E11
ij. = e11

ij.

E12
ij. = e11

ij. + e12
ij.

E13
ij. = −e14

ij.

E22
ij. = 2E12

ij.

E21
ij. = E23

ij. = E32
ij. = E12

ij.

E31
ij. = −e41

ij.

E33
ij. = e44

ij..

This concludes the analysis for hG.

4. Internal strain tensors

The inner displacement vectors ζ λ are related to the finite strain η by

ζ λ
i = Aλ

iJ ηJ + 1
2Aλ

iJKηJ ηK (5)

where the internal strain tensors Aλ
iJ and Aλ

iJK are 3 × 6 and 3 × 6 × 6 arrays respectively.
The symmetry of these tensors is the same as that of the Dλ-tensors and the elements that are
non-zero for the structures under discussion can be read from tables 4, 6, or 7 as appropriate
(except that the condition A2

iJ = 0 does not always apply, as shown below). In principle these
tensors may be determined experimentally by analysing x-ray diffraction from stressed single
crystals. In practice the measurements are either difficult because the effect is very small, as in
cD [11], or impossible because a sufficiently large single crystal cannot be obtained, as in hG,
rG, and hD. Theoretically their values may be obtained from internal equilibrium conditions,
which have the form [2]

Dλ
iJ + E

λµ

ij A
µ

jJ = 0 (6)

at the second order and

Dλ
iJK + E

λµ

ijJ A
µ

jK + E
λµ

ijKA
µ

jJ + F
λµν

ijk A
µ

jJ Aν
kK + E

λµ

ij A
µ

jJK = 0 (7)

at the third. If a composite inner elastic constant is defined through

Gλ
iJK ≡ Dλ

iJK + E
λµ

ijJ A
µ

jK + E
λµ

ijKA
µ

jJ + F
λµν

ijk A
µ

jJ Aν
kK,

then (7) takes the form

Gλ
iJK + E

λµ

ij A
µ

jJK = 0

and its solution parallels that of (6). Apart from the case of cD, only the independent linear
tensor components will be given in the following lists.

4.1. Cubic diamond

Equation (6) yields a single linear component given by

A14 = −D14/E11 (8)

and (7) gives three quadratic components

A114 = −G114/E11

A124 = −G124/E11

A156 = −G156/E11

(9)
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Table 7. Interrelation of components of the inner elastic constants of hG. The left-hand elements in
column 1, associated with the subscript sequence in column 2 if any, may be taken as an independent
set. The full sets of non-zero components are obtained by reading columns 1 and 2 in conjunction
with the appropriate relations in table 3. All components D2

iJ , D2
iJK , and F 222

ijk are zero.

D1
16

D3
16

E11
ii ii = 11, 33

E12
ii = E21

ii = 1
2 E22

ii = E23
ii = E32

ii ii = 11, 33

E13
ii = E31

ii ii = 11, 33

E33
ii ii = 11, 33

D1
iJK = D1

iKJ iJK = 116, 126, 136, 145, 212, 314

D3
iJK = D3

iKJ iJK = 116, 126, 136, 145, 212, 314

E11
ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E12
ijK = E21

ijK = 1
2 E22

ijK = E23
ijK = E32

ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E13
ijK = E31

ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

E33
ijK ijK = 111, 112, 113, 126, 135, 315, 331, 333

F 111
112

F 112
112 = F 121

112 = F 122
112 = F 211

112 = F 212
112 = F 221

112

F 113
112 = F 131

112 = F 311
112

F 123
112 = F 132

112 = F 213
112 = F 231

112 = F 312
112 = F 321

112

F 133
112 = F 313

112 = F 331
112

F 223
112 = F 232

112 = F 322
112 = F 233

112 = F 323
112 = F 332

112

F 333
112

in which

G114 = D114 + A14E111

G124 = D124 + A14E112

G156 = D156 + 2A14E126 + (A14)
2F123.

4.2. Rhombohedral graphite

The four independent linear tensor components are

A16 = −D16/E11

A15 = −D15/E11

A31 = −D31/E33

A33 = −D33/E33.

(10)

4.3. Hexagonal diamond

The solutions of (6) for hD, invoking the dependences to be found in table 6, lead to

A1
16 = A3

16 = −D1
16/(E

11
11 − E12

11 + E13
11)

A1
15 = −A3

15 = −D1
15/(E

11
11 − E13

11)

A1
31 = −A3

31 = −D1
31/(E

11
33 − E13

33)

A1
33 = −A3

33 = −D1
33/(E

11
33 − E13

33)

(11)
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with

A2
iJ = − 1

2 (A1
iJ + A3

iJ ). (12)

4.4. Hexagonal graphite

The solutions of (6) for hG, invoking the dependences to be found in table 7, lead to

A2
iJ = − 1

2 (A1
iJ + A3

iJ )

in this case also. The independence of D1 and D3, however, leads to similarly independent
A1 and A3 given by

A1
16 = (E33

11 − 1
2E12

11)D
1
16 − (E13

11 − 1
2E12

11)D
3
16

(E13
11 − 1

2E12
11)

2 − (E11
11 − 1

2E12
11)(E

33
11 − 1

2E12
11)

(13)

and

A3
16 = (E11

11 − 1
2E12

11)D
3
16 − (E13

11 − 1
2E12

11)D
1
16

(E13
11 − 1

2E12
11)

2 − (E11
11 − 1

2E12
11)(E

33
11 − 1

2E12
11)

. (14)

The inner displacement is confined to the basal plane in hG.

5. Zone-centre optic modes

The frequencies of the optical modes at the zone centre may be obtained from the Eλµ-tensors.
The relationship between these tensors and the more familiar coupling constants �αβ was
demonstrated in [2, section 5]:

E
λµ

ij = Q̃λα�
αβ

ij Qβµ

where

Q =




µ1 − 1 µ2 − 1 · · · µn−1 − 1
µ1 µ2 − 1 · · · µn−1 − 1
...

...
...

...

µ1 µ2 · · · µn−1 − 1
µ1 µ2 · · · µn−1




is an n × (n − 1) rectangular matrix in which µk = (
∑k

p=1 mp)/(
∑n

p=1 mp), mp being the
mass of the atom on sublattice p and n the number of sublattices. In the present context all
the masses are equal and µk = k/n.

The secular equation of lattice dynamics transforms into a determinant relating to optical
modes alone:

|Eλµ

ij − ω2Kλµδij | = 0 (15)

where Kλµ = Q̃λαραβQβµ is an element of an (n − 1) × (n − 1) density matrix and ρ is a
diagonal n × n matrix given by

ρ = ρ0




µ1 · · · · · ·
· µ2 − µ1 · · · · ·
...

...
...
...
...

...
...

· · · · · µn−1 − µn−2 ·
· · · · · · 1 − µn−1


 .

Again the condition of equal masses brings simplification: every element is equal to 1/n and
ρ = (ρ0/n)In, where In is the n × n unit matrix.
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In general, to each value of ω2 there corresponds an eigenvector given by

E
λµ

ij z
µ

j = ω2Kλµz
µ

i . (16)

For cD and rG it is taken as a normalized relative sublattice displacement vector �z whilst for
hD and hG it is Z, a triad of such vectors: Z = [�z1, �z2, �z3].

Where relevant the mode frequencies have been labelled with subscripts R or I to indicate
Raman or infra-red activity.

5.1. Cubic diamond and rhombohedral graphite

For both cD and rG, Q is the column vector [− 1
2/ 1

2 ] and K reduces to the scalar ρ0/4. As E

is diagonal, the secular equation for optic modes reduces to

|E11 − 1
4ρ0ω

2|3 = 0

for cD, giving the triply degenerate frequency

ω2
R(T2g) = 4

ρ0
E11. (17)

The eigenvectors are indeterminate: a set such as �z = [1, 0, 0], �z = [0, 1, 0], and �z = [0, 0, 1]
could be chosen to represent an LO mode and two TO modes in the limit �k → 0 along one of
the cubic axes. For rG the equation reduces to

|E11 − 1
4ρ0ω

2|2 |E33 − 1
4ρ0ω

2| = 0

giving a doubly degenerate frequency

ω2
R(Eg) = 4

ρ0
E11 (18)

with eigenvectors �z = [cos θ, sin θ, 0] with arbitrary θ and a non-degenerate one

ω2
R(A1g) = 4

ρ0
E33 (19)

whose eigenvector is �z = [0, 0, 1]. This and two values of θ differing by π/2 will then
represent an LO mode and two TO modes in the limit �k → 0 along the unique axis or any
direction perpendicular to it. All other directions see a mixing of longitudinal and transverse
character.

5.2. Hexagonal diamond

When n = 4, Q and K are given by

Q = 1

4




−3 −2 −1
1 −2 −1
1 2 −1
1 2 3




and

K = ρ0

16

[ 3 2 1
2 4 2
1 2 3

]
.

The resulting secular equation is a product of three 3 × 3 subdeterminants

|�1| |�2| |�3| = 0
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where the matrix �i is

�i =




E11
ii − 3

16ρ0ω
2 E12

ii − 1
8ρ0ω

2 E13
ii − 1

16ρ0ω
2

E12
ii − 1

8ρ0ω
2 2(E12

ii − 1
8ρ0ω

2) E12
ii − 1

8ρ0ω
2

E13
ii − 1

16ρ0ω
2 E12

ii − 1
8ρ0ω

2 E33
ii − 3

16ρ0ω
2




and symmetry imposes �1 = �2. Each of the subdeterminants factorizes into a linear and
quadratic part: the repeated determinant has the roots

ω2(E2u) = 8

ρ0
E12

11

ω2
R(E1g) = 8

ρ0
(E11

11 − E13
11)

ω2
R(E2g) = 8

ρ0
(E11

11 − E12
11 + E13

11)

(20)

resulting in three degenerate pairs of frequencies. The third determinant has the same form
and gives

ω2(B1u) = 8

ρ0
E12

33

ω2
R(A1g) = 8

ρ0
(E11

33 − E13
33)

ω2(B2g) = 8

ρ0
(E11

33 − E12
33 + E13

33)

(21)

for the remaining frequencies.
The ith components of the �zλ for a specific mode are the solutions of |�i[z1

i , z
2
i , z

3
i ]| = 0

when ω2 in �i has been replaced by its eigenvalue. The results for the above modes are

Z(E2u) = [[0, 0, 0], [cos θ, sin θ, 0], [0, 0, 0]]

Z(E1g) =
[[

1√
2

cos θ,
1√
2

sin θ, 0

]
, [0, 0, 0],

[
− 1√

2
cos θ, − 1√

2
sin θ, 0

]]

Z(E2g) =
[[

1√
3

cos θ,
1√
3

sin θ, 0

]
,

[
− 1√

3
cos θ, − 1√

3
sin θ, 0

]
,[

1√
3

cos θ,
1√
3

sin θ, 0

]]
Z(B1u) = [[0, 0, 0], [0, 0, 1], [0, 0, 0]]

Z(A1g) =
[[

0, 0,
1√
2

]
, [0, 0, 0],

[
0, 0, − 1√

2

]]

Z(B2g) =
[[

0, 0,
1√
3

]
,

[
0, 0, − 1√

3

]
,

[
0, 0,

1√
3

]]
.

Vibrational patterns corresponding to these eigenvectors are shown in figure 2.

5.3. Hexagonal graphite

The hexagonal allotropes have identical complements of components E
λµ

ii and thus the same
secular equation. The only difference arises from the dependency E11

ii = E33
ii that holds for hD
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2

E2g(1)

1
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o

E2g(2)
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E1g(1)

1

3

4

o

E1g(2)

x

o

x

2

A1g

1

3

4

2

E2u(1)

1

3

4

o

E2u(2)

o

x

x

2

B1u

1

3

4

Figure 2. A representative set of vibration patterns for hD. ‘x’ and ‘o’ indicate motions into and
out of the page.

but not for hG. This is responsible for the slightly more complicated expressions that follow.
The three degenerate pairs of frequencies are given by

ω2
I (E1u) = 8

ρ0
E12

11

ω2
R(E2g2) = 4

ρ0
[E11

11 − E12
11 + E33

11 + E
†
11]

ω2
R(E2g1) = 4

ρ0
[E11

11 − E12
11 + E33

11 − E
†
11]

(22)

where

(E
†
11)

2 = (E12
11 − 2E13

11)
2 + (E11

11 − E33
11)

2

and the three non-degenerate frequencies by

ω2
I (A2u) = 8

ρ0
E12

33

ω2
R(B1g2) = 4

ρ0
[E11

33 − E12
33 + E33

33 + E
†
33]

ω2
R(B1g1) = 4

ρ0
[E11

33 − E12
33 + E33

33 − E
†
33]

(23)

where

(E
†
33)

2 = (E12
33 − 2E13

33)
2 + (E11

33 − E33
33)

2.
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Figure 3. A representative set of vibration patterns for hG. ‘x’ and ‘o’ indicate motions into and
out of the page.

The eigenvectors for the E1u and A2u modes have the same form as their hD counterparts.
The remainder are slightly less constrained: the parameters a and b are, in every case, arbitrary;

Z(E1u) = [[0, 0, 0], [cos θ, sin θ, 0], [0, 0, 0]]

Z(E2g2) = [[a cos θ, a sin θ, 0], [ 1
2 (b − a) cos θ, 1

2 (b − a) sin θ, 0], [−b cos θ, −b sin θ, 0]]

Z(E2g1) = [[a cos θ, a sin θ, 0], [− 1
2 (a + b) cos θ, − 1

2 (a + b) sin θ, 0], [b cos θ, b sin θ, 0]]

Z(A2u) = [[0, 0, 0], [0, 0, 1], [0, 0, 0]]

Z(B1g2) = [[0, 0, a], [0, 0, 1
2 (b − a)], [0, 0, −b]]

Z(B1g1) = [[0, 0, a], [0, 0, − 1
2 (a + b)], [0, 0, b]].

Vibrational patterns corresponding to these eigenvectors are shown in figure 3.
The present approach has been checked against the traditional lattice dynamical treatment

of hG by Maradudin [12]. After allowing for a different labelling of sublattices, agreement is
total.

6. Effective inner elastic constants

When an initially strained crystal is further deformed, its energy can be expressed in two
ways: either in terms of the additional deformation and effective elastic constants or in terms
of the overall deformation and the elastic constants of the crystal in the unstrained state. The
procedure is described fully, in the context of the macroscopic elastic constants, by Wallace
in [13, section 8] and is readily extended to cover the microscopic constants.

The effective E-tensors, denoted by Ē
λµ

ij , may be used in the secular equation (with the
appropriate density ρ) to obtain the optic mode frequencies in stressed crystals. Strains can
be chosen to introduce off-diagonal elements and remove degeneracies. Phonon deformation
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parameters, which characterize the strain dependence of the frequency [14, 15], are easily
derived from the Ē-tensors below. It will be seen that these expressions can be very lengthy.
The results for the simplest case, that of hydrostatic pressure, are presented in section 7.

6.1. Cubic diamond

Ē11 = E11(1 + η1 − η2 − η3) + E111η1 + E112(η2 + η3)

Ē22 = E11(1 − η1 + η2 − η3) + E111η2 + E112(η1 + η3)

Ē33 = E11(1 − η1 − η2 + η3) + E111η3 + E112(η1 + η2)

Ē12 = (E11 + E126 + A14F123)η6

Ē13 = (E11 + E126 + A14F123)η5

Ē23 = (E11 + E126 + A14F123)η4.

(24)

6.2. Rhombohedral graphite

Ē11 = E11(1 + η1 − η2 − η3) + E111η1 + E112η2 + E113η3 + E114η4

+ F112A16(η1 − η2) + F113(A31(η1 + η2) + A33η3)

Ē12 = Ē21 = E11η6 + E114η5 + E126η6 + F112A16η6

Ē13 = 1
2 (E11 + E33)η5 + E135η5 + E136η6 + F113A16η6

Ē22 = E11(1 − η1 + η2 − η3) + E111η2 + E112η1 + E113η3 − E114η4

− F112A16(η1 − η2) + F113(A31(η1 + η2) + A33η3)

Ē23 = 1
2 (E11 + E33)η4 + E135η4 + E136(η1 + η2) + F113A16(η1 − η2)

Ē31 = 1
2 (E11 + E33)η5 + E315η5 + E316η6 + F113A16η6

Ē32 = 1
2 (E11 + E33)η4 + E315η4 + E316(η1 + η2) + F113A16(η1 − η2)

Ē33 = E33(1 − η1 − η2 + η3) + E331(η1 + η2) + E333η3 + F333(A31(η1 + η2) + A33η3).

(25)

6.3. Hexagonal diamond

Ē
λµ

11 = E
λµ

11 (1 + η1 − η2 − η3) + E
λµ

111η1 + E
λµ

112η2 + E
λµ

113η3 + E
λµ

114η4

+ F
λµν

112 Aν
16(η1 − η2) + F

λµν

113 (Aν
31(η1 + η2) + Aν

33η3)

Ē
λµ

12 = Ē
λµ

21 = E
λµ

11 η6 + E
λµ

114η5 + E
λµ

126η6 + F
λµν

112 Aν
16η6

Ē
λµ

13 = 1
2 (E

λµ

11 + E
λµ

33 )η5 + E
λµ

135η5 + E
λµ

136η6 + F
λµν

131 Aν
16η6

Ē
λµ

22 = E
λµ

11 (1 − η1 + η2 − η3) + E
λµ

111η2 + E
λµ

112η1 + E
λµ

113η3 − E
λµ

114η4

− F
λµν

112 Aν
16(η1 − η2) + F

λµν

113 (Aν
31(η1 + η2) + Aν

33η3)

Ē
λµ

23 = 1
2 (E

λµ

11 + E
λµ

33 )η4 + E
λµ

135η4 + E
λµ

136(η1 + η2) + F
λµν

131 Aν
16(η1 − η2)

Ē
λµ

31 = 1
2 (E

λµ

11 + E
λµ

33 )η5 + E
λµ

315η5 + E
λµ

316η6 + F
λµν

311 Aν
16η6

Ē
λµ

32 = 1
2 (E

λµ

11 + E
λµ

33 )η4 + E
λµ

315η4 + E
λµ

316(η1 + η2) + F
λµν

311 Aν
16(η1 − η2)

Ē
λµ

33 = E
λµ

33 (1 − η1 − η2 + η3) + E
λµ

331(η1 + η2) + E
λµ

333η3 + F
λµν

333 (Aν
31(η1 + η2) + Aν

33η3).

(26)
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6.4. Hexagonal graphite

Ē
λµ

11 = E
λµ

11 (1 + η1 − η2 − η3) + E
λµ

111η1 + E
λµ

112η2 + E
λµ

113η3 + F
λµν

112 Aν
16(η1 − η2)

Ē
λµ

12 = Ē
λµ

21 = E
λµ

11 η6 + E
λµ

126η6 + F
λµν

112 Aν
16η6

Ē
λµ

13 = 1
2 (E

λµ

11 + E
λµ

33 )η5 + E
λµ

135η5

Ē
λµ

22 = E
λµ

11 (1 − η1 + η2 − η3) + E
λµ

111η2 + E
λµ

112η1 + E
λµ

113η3 − F
λµν

112 Aν
16(η1 − η2)

Ē
λµ

23 = 1
2 (E

λµ

11 + E
λµ

33 )η4 + E
λµ

135η4

Ē
λµ

31 = 1
2 (E

λµ

11 + E
λµ

33 )η5 + E
λµ

315η5

Ē
λµ

32 = 1
2 (E

λµ

11 + E
λµ

33 )η4 + E
λµ

315η4

Ē
λµ

33 = E
λµ

33 (1 − η1 − η2 + η3) + E
λµ

331(η1 + η2) + E
λµ

333η3.

(27)

7. The pressure dependence of the optic mode frequencies

Under hydrostatic pressure, η4 = η5 = η6 = 0, η1 = η2 = η3 = −kp for cD and
η1 = η2 = −kap, η3 = −kcp in the remaining three cases, where k, ka , and kc are linear
compressibilities. These strains are inserted into the effective constants above, the effective
constants into the appropriate eigenvalue equations (again with the appropriate density, which
is also pressure dependent), and the latter differentiated with respect to p. No degeneracies
are lifted by hydrostatic pressure.

Some composite constants are defined below in order to shorten the lengths of some of
the expressions for hG and hD.

7.1. Cubic diamond

dω2
R(T2g)

dp
= −4k

ρ0
(2E11 + E111 + 2E112). (28)

7.2. Rhombohedral graphite

dω2
R(Eg)

dp
= − 4

ρ0
(2kaE11 + ka(E111 + E112 + 2F113A31) + kc(E113 + F113A33))

dω2
R(A1g)

dp
= − 4

ρ0
(2kcE33 + 2ka(E331 + F333A31) + kc(E333 + F333A33)).

(29)

7.3. Hexagonal diamond

The composite constants are

Eaa
ii. ≡ E11

ii. − E12
ii. + E13

ii.

Ebb
ii. ≡ E11

ii. − E13
ii.

F aaν
ii3 ≡ F 11ν

ii3 − F 12ν
ii3 + F 13ν

ii3

Fbbν
ii3 ≡ F 11ν

ii3 − F 13ν
ii3
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and the pressure derivatives are

dω2(E2u)

dp
= − 8

ρ0
(2kaE

12
11 + ka(E

12
111 + E12

112 + 2F 12ν
113 Aν

31) + kc(E
12
113 + F 12ν

113 Aν
33))

dω2
R(E1g)

dp
= − 8

ρ0
(2kaE

aa
11 + ka(E

aa
111 + Eaa

112 + 2Faaν
113 Aν

31) + kc(E
aa
113 + Faaν

113 Aν
33))

dω2
R(E2g)

dp
= − 8

ρ0
(2kaE

bb
11 + ka(E

bb
111 + Ebb

112 + 2Fbbν
113 Aν

31) + kc(E
bb
113 + Fbbν

113 Aν
33))

(30)

and
dω2(B1u)

dp
= − 8

ρ0
(2kcE

12
33 + 2ka(E

12
331 + F 12ν

333 Aν
31) + kc(E

12
333 + F 12ν

333 Aν
33))

dω2
R(A1g)

dp
= − 8

ρ0
(2kcE

aa
33 + 2ka(E

aa
331 + Faaν

333 Aν
31) + kc(E

aa
333 + Faaν

333 Aν
33))

dω2(B2g)

dp
= − 8

ρ0
(2kcE

bb
33 + 2ka(E

bb
331 + Fbbν

333 Aν
31) + kc(E

bb
333 + Aν

33F
bbν
333 )).

(31)

7.4. Hexagonal graphite

The composite constant is

Ecc
ii. ≡ E11

ii. − E12
ii. + E33

ii.

and the pressure derivatives are

dω2
I (E1u)

dp
= − 8

ρ0
(2kaE

12
11 + ka(E

12
111 + E12

112) + kcE
12
113)

dω2
R(E2g2)

dp
= − 4

ρ0

(
2ka(E

cc
11 + E

†
11) + ka(E

cc
111 + Ecc

112) + kcE
cc
113 +

dĒ
†
11

dp

)
dω2

R(E2g1)

dp
= − 4

ρ0

(
2ka(E

cc
11 − E

†
11) + ka(E

cc
111 + Ecc

112) + kcE
cc
113 − dĒ

†
11

dp

) (32)

where
dĒ

†
11

dp
= E12

11 − 2E13
11

E
†
11

(ka(E
12
111 − 2E13

111 + E12
112 − 2E13

112) + kc(E
12
113 − 2E13

113))

+
E11

11 − E33
11

E
†
11

(ka(E
11
111 − E33

111 + E11
112 − E33

112) + kc(E
11
113 − E33

113))

and
dω2

I (A2u)

dp
= − 8

ρ0
(2kcE

12
33 + 2kaE

12
331 + kcE

12
333)

dω2
R(B1g2)

dp
= − 4

ρ0

(
2kc(E

cc
33 + E

†
33) + 2kaE

cc
331 + kcE

cc
333 +

dĒ
†
33

dp

)
dω2

R(B1g1)

dp
= − 4

ρ0

(
2kc(E

cc
33 − E

†
33) + 2kaE

cc
331 + kcE

cc
333 − dĒ

†
33

dp

) (33)

where
dĒ

†
33

dp
= E12

33 − 2E13
33

E
†
33

(2ka(E
12
331 − 2E13

331) + kc(E
12
333 − 2E13

333))

+
E11

33 − E33
33

E
†
33

(2ka(E
11
331 − E33

331) + kc(E
11
333 − E33

333)).
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8. Summary

The different microscopic tensors that arise in connection with the elasticity and with the
frequencies and eigenvectors of the zone-centre optic modes in four carbon allotropes have
been analysed in detail for the first time. Expressions for the internal strain tensor components
have also been derived and may be seen to relate to the frequencies of the Raman-active modes.
This illustrates a general symmetry requirement, first given by Miller and Axe [16], that only
Raman-active modes contribute to the internal strain part of the elastic constants. These results
are carried forward to the companion paper in which the macroscopic elasticity through the
third order is subjected to similar detailed scrutiny. Finally the effective inner elastic constants
under arbitrary strain have been determined and used to obtain the pressure derivatives of the
optic mode frequencies.
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